Self-Organized Artificial Grammar Learning in Spiking Neural Networks
نویسندگان
چکیده
The Artificial Grammar Learning (AGL) paradigm provides a means to study the nature of syntactic processing and implicit sequence learning. With mere exposure and without performance feedback, human beings implicitly acquire knowledge about the structural regularities implemented by complex rule systems. We investigate to which extent a generic cortical microcircuit model can support formally explicit symbolic computations, instantiated by the same grammars used in the human AGL literature and how a functional network emerges, in a self-organized manner, from exposure to this type of data. We use a concrete implementation of an input-driven recurrent network composed of noisy, spiking neurons, built according to the reservoir computing framework and dynamically shaped by a variety of synaptic and intrinsic plasticity mechanisms operating concomitantly. We show that, when shaped by plasticity, these models are capable of acquiring the structure of a simple grammar. When asked to judge string legality (in a manner similar to human subjects), the networks perform at a qualitatively comparable level.
منابع مشابه
Self-Organized Spiking Neural Network Model for Data Clustering
In recent modern era of neural networks technology, a model called Spiking Neural Network (SNN) was born. This SNN was classified by Maass [1] as the third generation of neural networks. It is a new kind of neural network which is inspired and motivated by the biological neurons ways of communication. The biological neurons communicate with each other through the media of action potentials, oft...
متن کاملStatistical Prediction of Probable Seismic Hazard Zonation of Iran Using Self-organized Artificial Intelligence Model
The Iranian plateau has been known as one of the most seismically active regions of the world, and it frequently suffers destructive and catastrophic earthquakes that cause heavy loss of human life and widespread damage. Earthquakes are regularly felt on all sides of the region. Prediction of the occurrence location of the future earthquakes along with determining the probability percentage can...
متن کاملNeural coordination can be enhanced by occasional interruption of normal firing patterns: A self-optimizing spiking neural network model
The state space of a conventional Hopfield network typically exhibits many different attractors of which only a small subset satisfies constraints between neurons in a globally optimal fashion. It has recently been demonstrated that combining Hebbian learning with occasional alterations of normal neural states avoids this problem by means of self-organized enlargement of the best basins of attr...
متن کاملHybrid Systems of Computational Intelligence Evolved from Self- Learning Spiking Neural Network
Computational intelligence paradigm covers several approaches for technical problems solving in an intelligence manner, such as artificial neural networks, fuzzy logic systems, evolutionary computation, etc. Each approach provides engineers and researchers with the smart and powerful tools to handle various real-life concerns. Even more powerful tools were designed at the joint of different com...
متن کاملSupervised and unsupervised weight and delay adaptation learning in temporal coding spiking neural networks
Artificial neural networks are learning paradigms which mimic the biological neu ral system. The temporal coding Spiking Neural Network, a relatively new artifi cial neural network paradigm, is considered to be computationally more powerful than the conventional neural network. Research on the network of spiking neurons is an emerging field and has potential for wider investigation. This rese...
متن کامل